Note

A Short Proof That Every Weak Tchebycheff System May Be Transformed into a Weak Markov System

R. A. Zalik
Department of Algebra, Combinatorics and Analysis, Division of Mathematics, 120 Mathematics Annex Building, Auburn University, Auburn, Alabama 36849-5307

Communicated by E. W. Cheney
Received November 17, 1988; revised November 5, 1989

Let $n \geqslant 0$ be an integer and let A be a set of real numbers containing at least $n+2$ elements. A linearly independent sequence $\left\{y_{0}, \ldots, y_{n}\right\}$ of real valued functions defined on A is called a weak Tchebycheff system (WT-system), provided that for any $t_{0}<t_{1}<\cdots<t_{n}$ in A, $\operatorname{det}\left[y_{i}\left(t_{j}\right)\right.$; $i, j=0, \ldots, n] \geqslant 0$ (cf., e.g., Karlin and Studden [1]). If $\left\{y_{0}, \ldots, y_{i}\right\}$ is a WTsystem for $i=0, \ldots, n$, we say that $\left\{y_{0}, \ldots, y_{n}\right\}$ is a weak Markov system, or a complete $W T$-system. In [3], Stockenberg proved the following

Theorem. Let $Y:=\left\{y_{0}, \ldots, y_{n}\right\}$ be a WT-system on A. Then there exists a weak Markov system $\left\{z_{0}, \ldots, z_{n}\right\}$ spanning the same space as Y.

A shorter proof of this theorem is due to Schumaker (cf. [2, Theorem 2.41]). However, both proofs are based on a theorem of Zielke that characterizes WT-systems in terms of strong alternations (see, e.g., [5, pp. $12-14]$). The purpose of the present paper is to present a short and simple proof of Stockenberg's theorem that only uses the above definition of a WT-system. The method of proof is adapted from [4]. We shall use the following notation:

$$
\left|\begin{array}{c}
y_{0}, \ldots, y_{n} \\
t_{0}, \ldots, t_{n}
\end{array}\right|:=\operatorname{det}\left[y_{i}\left(t_{j}\right) ; i, j=0, \ldots, n\right] .
$$

Proof of the Theorem. We may assume $n>0$. Since Y is linearly indcpendent, there are points $q_{0}<q_{1}<\cdots<q_{n}$ in A such that $D:=\left|\begin{array}{l}y_{0}, \ldots, y_{n} \\ q_{0} \ldots, q_{n}\end{array}\right|>0$.

Let $v_{i}(t):=\left.D^{-1}\right|_{q_{0}, \ldots, q_{i-1}, t, q_{i+1}, \ldots, q_{n}} ^{y_{0}, \ldots, y_{n}} \mid, i=0, \ldots, n$. If

$$
\left[\begin{array}{c}
v_{0} \\
\vdots \\
v_{n}
\end{array}\right]=M\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{n}
\end{array}\right]
$$

then $\left|\begin{array}{l}v_{0}, \ldots, v_{n} \\ v_{0}, \ldots, t_{n}\end{array}\right|=\operatorname{det}(M)\left|\begin{array}{l}y_{0}, \ldots, y_{n} \\ t_{0}, \ldots, t_{n}\end{array}\right|$. Thus, since $\left|\begin{array}{l}v_{0}, \ldots, v_{n} \\ q_{0}, \ldots, q_{n}\end{array}\right|=1$, we deduce that $\operatorname{det}(M)=1 / D>0$, and therefore that $\left\{v_{0}, \ldots, v_{n}\right\}$ is a WT-system on A that spans the same space as Y. Let $u_{n}:=(-1)^{n} v_{0}+(-1)^{n-1} v_{1}+\cdots+v_{n}$, and let B denote the subset of points of $\left[q_{n}, \infty\right) \cap A$ for wich $u_{n}(t)>0$. Note that $u_{n}\left(q_{n}\right)=v_{n}\left(q_{n}\right)=1$, and therefore that B is not empty. Moreover, $\left\{v_{0}, \ldots, v_{n-1}, u_{n}\right\}$ is a WT-system that spans the same space as Y. Let $b:=\sup (B)$, and let $\left\{b_{m}\right\}$ be an increasing sequence of points of B that converges to b. In particular, if $b \in B$ we set $b_{m}=b$. Note that $u_{n}\left(b_{m}\right)>0$. Setting $c_{i}(m):=v_{i}\left(b_{m}\right) / u_{n}\left(b_{m}\right)$ and $u_{i}(t, m):=v_{i}(t)-c_{i}(m) u_{n}(t), i=0, \ldots$, $n-1$, we deduce that

$$
\begin{equation*}
u_{i}\left(b_{m}, m\right)=0, \quad i=0, \ldots, n-1 \tag{1}
\end{equation*}
$$

It follows from their definition that the functions $(-1)^{n-i} v_{i}$ are nonnegative on $\left[q_{n}, \infty\right) \cap A$, and therefore that $(-1)^{n-i} c_{i} \geqslant 0$. Since $\sum_{i=0}^{n}(-1)^{n-i} c_{i}(m)=1$, this implies that the coefficients $c_{i}(m)$ are bounded between -1 and 1 . Thus there is a sequence $\left\{m_{k}\right\}$ and numbers c_{0}, \ldots, c_{n-1} such that $\lim _{k \rightarrow \infty} c_{i}\left(m_{k}\right)=c_{i}, i=0, \ldots, n-1$. Let

$$
\begin{equation*}
u_{i}:=v_{i}-c_{i} u_{n}, \quad i=0, \ldots, n-1 \tag{2}
\end{equation*}
$$

Since $\left\{u_{0}, \ldots, u_{n}\right\}$ spans the same space as Y on A, we conclude that the functions $\left\{u_{0}, \ldots, u_{n-1}\right\}$ are linearly independent there.

Let $t_{0}<t_{1}<\cdots<t_{n-1}$ be points in $(-\infty, b) \cap A$. For m sufficiently large we have $b_{m}>t_{n-1}$, and from (1) we deduce that

$$
\left|\begin{array}{c}
u_{0}(\cdot, m), \ldots, u_{n-1}(\cdot, m), u_{n} \\
t_{0}, \ldots, t_{n-1}, b_{m}
\end{array}\right|=u_{n}\left(b_{m}\right)\left|\begin{array}{c}
u_{0}(\cdot, m), \ldots, u_{n-1}(\cdot, m) \\
t_{0}, \ldots, t_{n-1}
\end{array}\right|
$$

and therefore

$$
\left|\begin{array}{c}
u_{0}(\cdot, m), \ldots, u_{n-1}(\cdot, m) \\
t_{0}, \ldots, t_{n-1}
\end{array}\right| \geqslant 0
$$

Thus, since $u_{i}(t)=\lim _{k \rightarrow \infty} u_{i}\left(t, m_{k}\right), i=0, \ldots, n-1$, it is clear that

$$
\left|\begin{array}{c}
u_{0}, \ldots, u_{n-1} \tag{3}\\
t_{0}, \ldots, t_{n-1}
\end{array}\right| \geqslant 0
$$

Moreover, from the definition of $\left\{b_{m}\right\}$ and (1) we conclude that if $b \in B$ then

$$
\begin{equation*}
u_{i}(b)=0, \quad i=0, \ldots, n \tag{4}
\end{equation*}
$$

On the other hand, if $b \in A-B$ then $u_{n}(b)=0$ and therefore, since $(-1)^{n-i} v_{i}(b) \geqslant 0$, we conclude that $v_{i}(b)=0, i=0, \ldots, n-1$, and applying (2) we deduce that (4) is valid in this case as well. Thus, we have shown that (3) is valid for any choice of points $t_{0}<\cdots<t_{n-1}$ in $(-\infty, b] \cap A$. If $(b, \infty) \cap A=\varnothing$ we are done. Otherwise note that, since u_{n} vanishes to the right of b, all the functions v_{i} must vanish there. Hence, (2) implies that $u_{i} \equiv 0$ on $(b, \infty) \cap A$ for $i=0, \ldots, n-1$. We have therefore shown that $\left\{u_{0}, \ldots, u_{n-1}\right\}$ is a WT-system on A. Repeating the above procedure for $\left\{u_{0}, \ldots, u_{n-1}\right\}$ and so on, the conclusion follows.
Q.E.D.

References

1. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
2. L. L. Schumaker, "Spline Functions: Basic Theory," Wiley-Interscience, New York, 1981.
3. B. Stockenberg, Subspaces of weak and oriented Tchebyshev-spaces, Manuscripta Math. 20 (1977), 401-407.
4. R. A. Zalik, On transforming a Tchebycheff system into a complete Tchebycheff system, J. Approx. Theory 20 (1977), 220-222.
5. R. Zielke, "Discontinuous Čebyšev Systems," Lecture Notes in Mathematics, Vol. 707, Springer-Verlag, New York, 1977.
